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ABSTRACT

Faithfully summarizing the knowledge encoded by a deep neural network (DNN)
into a few symbolic primitive patterns without losing much information represents
a core challenge in explainable AI. To this end, Ren et al. (2024) have derived a
series of theorems to prove that the inference score of a DNN can be explained as
a small set of interactions between input variables. However, the lack of general-
ization power makes it still hard to consider such interactions as faithful primitive
patterns encoded by the DNN. Therefore, given different DNNs trained for the
same task, we develop a new method to extract interactions that are shared by
these DNNs. Experiments show that the extracted interactions can better reflect
common knowledge shared by different DNNs1.

1 INTRODUCTION

Explaining and quantifying the exact knowledge encoded by a deep neural network (DNN) presents a
new challenge in explainable AI. Previous studies mainly visualized patterns encoded by DNNs (Bau
et al., 2017; Kim et al., 2018) and estimated a saliency map on input variables (Simonyan et al., 2013;
R. Selvaraju et al., 2017). However, a new question is that can we formulate the implicit knowledge
encoded by the DNN as explicit and symbolic primitive patterns? In fact, we hope these primitive
patterns serve as elementary units for inference, just like concepts in human cognition.

However, there is no widely accepted way to define the concept encoded by a DNN, because we
cannot mathematically define/formulate the exact concept in human cognition. Nevertheless, if we
ignore cognitive issues, Ren et al. (2024); Li & Zhang (2023b) have derived a series of theorems
as convincing evidence to take interactions as symbolic primitives encoded by a DNN. Specifically,
an interaction captures the intricate nonlinear relationship encoded by the DNN. For instance, when
a DNN processes a sentence “It is raining cats and dogs!”, the DNN may encode the interaction
between a set of input variables S = {raining, cats, and, dogs} ⊆ N . When all words in S are
present, an interactive effect I(S) emerges, and pushes the DNN’s inference towards the semantic
meaning of “heavy rain.” However, if any word in S is masked, the effect will be removed.

Ren et al. (2024) have mainly proven two theorems to justify the convincingness of considering
above interactions as primitive inference patterns encoded by the DNN. First, it is proven that under
some common conditions2, a well-trained DNN usually just encodes a limited number of interactions
w.r.t. a few sets of input variables. More crucially, let us randomly mask an input sample x in
different ways to generate an exponential number of masked samples. It is proven that people
can use just a few interactions to accurately approximate the DNN’s outputs on all these masked
samples. Thus, these few interactions are referred to as interaction primitives.

Despite the aforementioned theorems, this study does not yet deem the above interactions as faithful
primitives of DNNs. The core problem is that existing interaction extraction methods cannot the-
oretically guarantee the generalization (transferability) of the interactions, e.g., ensuring to extract
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Figure 1: Distinctive and shared interactions. When we extract AND-OR interactions from two
DNNs, AND interactions S1={black, dog} and S2={black, dog, over}, and OR interactions S3=
{black, dog} and S4={black, over} are shared by two DNNs, while interactions, such as the AND
interaction S5 = {they, said}, are distinctive interactions encoded by a single DNN.

common interactions shared by different AI models. Interactions, which are not shared by different
DNNs, may be perceived as out-of-distribution signals without clear meanings.

Therefore, in this study, we revisit the generalization of interactions. Specifically, we identify a clear
mechanism that makes the existing method extract different interactions from the same DNN under
different initialization states, which hurts the generalization power of interactions.

Thus, to address the generalization issue, we propose a new method for extracting generalizable
interactions. A generalizable interaction is defined as Figure 1 shows. Given multiple DNNs trained
for the same task and an input sample, if an interaction can be extracted from all these DNNs, then
we consider it generalizable. Our method is designed to extract interactions with maximum gen-
eralization power. This approach ensures that if an interaction exhibits a significant impact on the
output score for one DNN, it usually demonstrates noteworthy influence for other DNNs. We con-
ducted experiments on various dataset. Experiments showed that our proposed method significantly
improved the generalization power of the extracted interactions across different DNNs.

2 GENERALIZABLE INTERACTION PRIMITIVES ACROSS DNNS

2.1 PRELIMINARIES: EXPLAINING THE NETWORK OUTPUT WITH INTERACTION PRIMITIVES

Although there is no theory to guarantee that how to define concepts that fit well with human cogni-
tion, Li & Zhang (2023a) and Ren et al. (2024) still provided mathematical supports to explain why
we can still use interactions between input variables as the primitives or concepts encoded by the
DNN. Specifically, there are two types of interactions, i.e., AND interactions and OR interactions.

AND interactions. Given a function v : Rn → R, let us consider an input sample x =
[x1, x2, · · · , xn]

⊺ with n input variables indexed by N = {1, 2, ..., n}. Here, v(x) ∈ R denotes
the function output on x3. Then, Ren et al. (2023b) have used the Harsanyi dividend (Harsanyi,
1963) Iand(S|x) to quantify the numerical effect of the AND relationship between input variables in
S ⊆ N , which is encoded by the function v. We consider this interaction as an AND interaction.

Iand(S|x) :=
∑

T⊆S
(−1)|S|−|T |v(xT ). (1)

where Iand(∅|x) = v(x∅), and xT denotes a sample whose input variables in N \ T are masked4.

Each AND interaction Iand(S|x) reveals the AND relationship between all variables in S. For in-
stance, let us consider the slang term S = {x3, x4, x5, x6} in the sentence “x1 = It, x2 = is, x3 =
raining, x4 = cats, x5 = and, x6 = dogs!” as a toy example. The co-occurrence of four words forms
the semantic concept of “heavy rain” and contributes a numerical effect Iand(S|x) to the function
output. Otherwise, the masking of any word xi ∈ S invalidates the semantic concept and eliminates
the interaction effect, i.e., obtaining Iand(S|xmasked) = 0 on the masked sample.

3If the target function/model/network has a vectorized output, e.g., a DNN for multi-category classification,
we may set v(x) = log p(y=ytruth|x)

1−p(y=ytruth|x) by following (Deng et al., 2022).
4We followed (Li & Zhang, 2023a) to obtain two discrete states for each input variable, i.e., the masked and

unmasked states. We simply masked each input variable i ∈ N \ S using baseline values.
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OR interactions. Analogously, we can also use the OR interaction to explain the function v : Rn →
R. To this end, (Zhou et al., 2023; Li & Zhang, 2023a) have defined the following OR interaction
effect Ior(S|x) to measure the OR interaction encoded by v. In particular, Ior(∅|x) = v(x∅).

Ior(S|x) := −
∑

T⊆S
(−1)|S|−|T |v(xN\T ). (2)

Each OR interaction Ior(S|x) describes the OR relationship between all variables in S. Let us
consider an input sentence “x1 = This, x2 = movie, x3 = is, x4 = boring, x5 = and, x6 =
disappointing” for sentiment classification. Let us set S = {x4, x6}. The presence of any word in
S will contribute a negative sentiment effect Ior(S|x) to the function output.

Sparsity of interactions. Theoretically, according to Equation (1), a function can encode at most 2n
different AND interactions w.r.t. all 2n subsets ∀S, S ⊆ N . However, Ren et al. (2024) have proved
that under some common conditions2, most well-trained DNNs only encode a small set of AND
interactions, denoted by Ω, i.e., only a few interactions S ∈ Ω have considerable effects Iand(S|x).
All other interactions have almost zero effects, i.e., Iand(S|x) ≈ 0, which can be regarded as a set of
negligible noise patterns.

It is worth noting that an OR interaction can be regarded as a specific AND interaction, if we inverse
the definition of the masked state and the unmasked state of an input variable5. Thus, the proven
sparsity of AND interactions can also indicate the conclusion that well-trained DNNs tend to encode
a small number of OR interactions.

Definition of interaction primitives. Considering the above proven sparsity of interactions, we
define an interaction primitive as a salient interaction. Formally, given a threshold τ , the set of
interaction primitives are defined as Ω = {S ⊆ N : |I(S|x)| > τ}.
Theorem 1 (Universal matching theorem, proved by (Ren et al., 2024)). As the corollary of the
proven sparsity in Ren et al. (2024), the function’s output on all 2n masked samples {xS |S ⊆
N} could be universally explained by the interaction primitives in Ω, s.t., |Ω| ≪ 2n, i.e., ∀S ⊆
N, v(xS) =

∑
T⊆S Iand(T |x) ≈

∑
T⊆S:T∈Ω Iand(T |x).

In particular, Theorem 1 shows that if we arbitrarily mask the input sample x, we can get 2n different
masked samples4, ∀S, S ⊆ N . Then, we can universally match the output of the function v(xS) on
all 2n masked samples using only a few interaction primitives in Ω.

2.2 FAITHFULNESS PROBLEM WITH INTERACTION-BASED EXPLANATIONS

Basic setting of using AND-OR interactions to explain a DNN. In this section, we consider to
employ both AND interactions and OR interactions to explain the DNN’s output. This is because
the complexity of the representations in DNNs makes it difficult to rely solely on either AND inter-
actions or OR interactions to faithfully explain true inference primitives encoded by the DNN.

To this end, we need to decompose the output of the DNN into two terms v(x) = vand(x) + vor(x),
so that we can use AND interactions to explain the term vand(x) and use OR interactions to explain
the term vor(x). In this way, the first challenge is how to learn an appropriate decomposition of
vand(x) and vor(x) that reveals intrinsic primitive interactions encoded by the DNN. We will discuss
this challenge later.

No matter how we randomly decompose v(x) = vand(x)+vor(x), Theorem 2 states that we can still
use interactions to fit the DNN’s outputs on 2n randomly masked samples {xT |T ⊆ N}. Further-
more, according to the sparsity of interaction primitives in Section 2.1, we can obtain Proposition 1,
i.e., the 2n network outputs on all masked samples can usually be approximated by a small number
of AND interaction primitives in Ωand and OR interaction primitives in Ωor, s.t., |Ωand|, |Ωor| ≪ 2n.

Theorem 2 (Universal matching theorem, proof in Appendix C). Let us be given a DNN v and an
input sample x. For each randomly masked sample xT , T ⊆ N , we obtain

v(xT ) = vand(xT ) + vor(xT ) =
∑

S⊆T
Iand(S|xT ) +

∑
S∈{S:S∩T ̸=∅}∪{∅}

Ior(S|xT ). (3)
5To compute Iand(S|x), we use a baseline value bi and set xi = bi to represent its masked state. If we

consider bi variable as the presence of the variable, and consider the original value xi as its masked state (i.e.,
using v(bT ) to represent v(xN\T ) in Equation (2)), then Ior(S|x) in Equation (2) can be formulated the same
as the AND interaction in Equation (1).
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Proposition 1. The output of a well-trained DNN on all 2n masked samples {xT |T ⊆ N}
could be universally approximated by the interaction primitives in Ωand and Ωor, s.t., |Ωand|,
|Ωor| ≪ 2n, i.e., ∀T ⊆ N, v(xT ) =

∑
S⊆T Iand(S|xT ) +

∑
S∈{S:S∩T ̸=∅}∪{∅} Ior(S|xT ) ≈

v(x∅)+
∑

∅̸=S⊆T :S∈Ωand Iand(S|xT )+
∑

S∩T ̸=∅:S∈Ωor Ior(S|xT ), where v(x∅) = vand(x∅)+vor(x∅).

Problems with the faithfulness of interactions. Although the universal matching capacity proven
in Theorem 2 is a quite significant advantage of AND-OR interactions, it is still not the ultimate
guarantee for the faithfulness of the extracted interactions. To be precise, there is still no standard
way to faithfully decompose the vand(x) term and the vor(x) term that reveal intrinsic primitive
interactions encoded by the DNN, considering the following two challenges.

• Challenge 1, ambiguous decomposition of vand(x) and vor(x) usually brings in considerable uncer-
tainty in the extraction of interactions. Let us take the following toy Boolean function as an example
to illustrate the diversity of interactions, f(x) = x1 ∧x2 ∧x3+x2 ∧x3+x3 ∧x4+x4 ∨x5, where
x = [x1, x2, x3, x4, x5]

⊺ and xi ∈ {0, 1}. We have two ways to decompose f(x). First, we can
simply decompose vand(x) = x1 ∧ x2 ∧ x3 + x2 ∧ x3 + x3 ∧ x4 and vor(x) = x4 ∨ x5, then to ex-
plain f(x) with an OR interaction Ior(S = {4, 5}) and three AND interactions Iand(S = {1, 2, 3}),
Iand(S = {2, 3}) and Iand(S = {3, 4}). Alternatively, we can also use exclusively AND interactions
to explain f(x). Specifically, we can rewrite vand(x) = x1∧x2∧x3+x2∧x3+x3∧x4+x4∨x5 =
x1 ∧ x2 ∧ x3 + x2 ∧ x3 + x3 ∧ x4 + (x4 + x5 − x4 ∧ x5) and vor(x) = 0, w.r.t xi ∈ {0, 1}. Thus,
the vand term can be explained by a total of six AND interaction primitives. This is a typical case for
diverse strategy of extracting interactions that are generated by different decompositions.

The aforementioned f(x) is just an exceedingly simple function. In real-world applications, DNNs
usually encode intricate AND-OR relationships among input variables, making it exceptionally chal-
lenging to formulate an explicit expression for the DNN function or to establish a definitive ground-
truth decomposition of vand(x) and vor(x). Consequently, the diversity issue with interactions are
ubiquitous and unavoidable.

• Challenge 2, how to ensure the interaction primitives are generalizable. It is commonly considered
that generalizable primitives are usually transferable over different models trained for the same task,
instead of being over-fitted by a single model. Thus, if an interaction primitive can be consistently
extracted from different DNNs, then it can be considered as a faithful concept. Otherwise, non-
generalizable (non-transferable) interactions do not appear as faithful concepts, even though they
still satisfy the criteria of sparsity and universal matching in Theorem 2.

Definition 1 (Transferability of interaction primitives). Given m different DNNs trained for the
same task, v(1), v(2), . . . , v(m), we use AND-OR interactions to explain the output score v(i)(x)

of each DNN v(i) on the input sample x. Let Ωand,(i) = {S ⊆ N : |I(i)and(S|x)| > τ (i)} and
Ωor,(i) = {S ⊆ N : |I(i)or (S|x)| > τ (i)} denote a set of sparse AND interaction primitives and a
set of sparse OR interaction primitives, respectively. Then, the set of generalizable AND and the
set of generalizable OR interaction primitives for the i-th DNN, are defined as Ωand

shared =
⋂m

i=1 Ω
and,(i)

and Ωor
shared =

⋂m
i=1 Ω

or,(i), respectively. The generalization power of AND and OR interactions of the
i-th DNN, can be measured by s

(i)
and = |Ωand

shared|/|Ωand,(i)| and s
(i)
or = |Ωor

shared|/|Ωor,(i)|, respectively.

Definition 1 introduces the generalization power of interaction primitives. A larger value signifies
higher transferability and, consequently, more generalizable interactive primitives.

2.3 EXTRACTING GENERALIZABLE INTERACTION PRIMITIVES

Neither of the aforementioned two challenges has been adequately tackled in previous interaction
studies. In essense, interactions are determined by the decomposition of the network output v(x) =
vand(x)+vor(x). Thus, if we rewrite the decomposition as vand(xT ) = 0.5v(xT )+γT and vor(xT ) =
0.5v(xT )− γT , then the learning of the best decomposition is equivalent to learning a set of {γT }.
Here, the parameter γT ∈ R for a subset T ⊆ N determines a specific decomposition between
vand(xT ) and vor(xT ). Therefore, our goal is to learn the appropriate parameters {γT } that reduce
the aforementioned uncertainty of interaction primitives and boost their generalization power.
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To this end, to alleviate the uncertainty of the interactions, the most intuitive approach is to learn
the sparsest interactions, considering the principle of Occam’s Razor, as follows. It is because the
sparsest (or simplest) explanation is usually considered as the most faithful explanation.

min{γT } ∥Iand∥1 + ∥Ior∥1, (4)

where Iand = [Iand(T1|x), . . . , Iand(T2n |x)]⊺, Ior = [Ior(T1|x), . . . , Ior(T2n |x)]⊺ ∈ R2n , Tk ⊆ N .

The above ℓ1 norm loss promotes the sparsity of both AND interactions and OR interactions.

2.3.1 ONLY ACHIEVING SPARSITY IS NOT ENOUGH

Although the sparsity can be used to reduce the uncertainty of interactions, the sparsity of interac-
tions w.r.t. each single input sample obtained in Equation (4) does not fully solve the above two
challenges. First, Ren et al. (2023c) have found that the extraction of high-order interactions is
usually sensitive to small noises in input variables, where the order is defined as the number of in-
put variables in S, i.e., order(S) = |S|. It means that when different noises are added to the input
samples, the algorithm may extract fully different high-order interactions6. Similarly, this will also
hurt the generalization power of interaction primitives over different samples, when these samples
contain similar sets of input variables.

Second, optimizing the loss in Equation (4) may lead to diverse solutions. Given different ini-
tial states, the loss in Equation (4) may learn two different sets of parameters {γT } as two lo-
cal minima with similar loss values, while the two sets of parameters {γT } generate two different
sets of interactions. We conducted experiments to illustrate this point. Given a pre-trained BERT
model (Devlin et al., 2019) and an input sentence x on the SST-2 dataset for sentiment classifica-
tion, we learned the parameters {γT } to extract sparse interaction primitives4. In this experiment,
we repeatedly extracted two sets of AND-OR interactions by applying two different sets of ini-
tialized parameters {γT }, which are denoted by (Aand, Aor) and (Band, Bor). Aand = {S ⊆ N :
|Iand(S|x)| > τAand)} denotes the set of AND interaction primitives extracted by a certain initial-
ization of {γT }, where the parameter τAand was determined to ensure that each set selected the most
salient K = 100 interactions. We used the transferability of interaction primitives in Definition 1,
Sand = |Aand ⋂Band|/|Aand| and Sor = |Aor ⋂Bor|/|Aor|, to measure the diversity of interactions
caused by the different parameter initializations. Table 2 shows that given different initial states,
optimizing the loss in Equation (4) usually extracted two dramatically different sets of AND-OR in-
teractions with only 21% overlap. Figure 12 further shows the top 5 AND-OR interaction primitives
extracted from BERT model on the same input sentence, which illustrates that given different initial
states, the loss in Equation (4) would learn different AND-OR interactions.

Third, prioritizing sparsity cannot guarantee high generalization power across different models.
Since a DNN may simultaneously learn common knowledge shared by different DNNs and be over-
fitted to some out-of-the-distribution patterns, different DNNs may only share partial interaction
primitives. We believe that the shared common interactions are more faithful, so the transferability
is another way to guarantee the generalization power of interaction primitives. Therefore, we hope
to formulate and extract common interactions that are generalizable through different DNNs.

We conducted experiments to illustrate the difference between interactions extracted from two DNNs
by using Equation (4). We used BERTBASE vbase and BERTLARGE vlarge (Devlin et al., 2019) for the
task of sentiment classification. Specifically, given an input sentence x, we learned two sets of pa-
rameters {γbase

T } and {γlarge
T } for the BERT-base model and the BERT-large model, respectively.

Then we extracted two sets of AND-OR interactive concepts (Ωand,base, Ωor,base) and (Ωand,large,
Ωor,large), respectively. Subsequently, we computed the transferability of the extracted interaction
primitives according to Definition 1. Figure 3(a) shows that the transferability of the extracted AND-
OR interaction primitives was much lower than interactions proposed in this study.

2.3.2 EXTRACTING GENERALIZABLE INTERACTIONS

As discussed above, the sparsity alone is not enough to tackle the aforementioned challenges. There-
fore, in this study, we propose to use the generalization power as a straightforward purpose, to

6Please see Appendix D for details.
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boost the faithfulness of interactions. Meanwhile, the sparsity of interactions is also supposed to be
guaranteed. Given a total of m DNNsv(1),v(2),. . ., v(m) trained for the same task, the objective of
extracting generalizable interactions shared by the m DNNs is revised from Equation (4), as follows.

min{γ(1)
T ,...,γ

(m)
T } ∥rowmax(Iand)∥1 + ∥rowmax(Ior)∥1, (5)

where Iand =
[
I
(1)
and I

(2)
and . . . I

(m)
and

]
∈ R

2n×m and Ior =
[
I
(1)
or I

(2)
or . . . I

(m)
or

]
∈ R

2n×m. I
(i)
and =

[I
(i)
and(T1|x), . . . , I(i)and(T2n |x)]⊺ ∈ R

2n and I
(i)
or represent the all 2n AND-OR interactions extracted

from the i-th DNN, Tk ⊆ N . The matrix operator rowmax() computes the ℓ∞ norm of each
row within the matrix, i.e., rowmax(Iand) = [∥Iand[1, :]∥∞, . . . , ∥Iand[2

n, :]∥∞]
⊺ ∈ R

2n . For each
specific subset of variables Tk ⊆ N , the rowmax() operation returns the most salient interaction
strength over all m interactions from the m DNNs. Please see Appendix F for more discussion on
the matrix Iand.

Unlike Equation (4), the revised loss in Equation (5) only penalizes the most salient interactions over
all m interactions extracted from m DNNs, with respect to each subset Tk ⊆ N . This loss function
ensures that if a DNN encodes a strong interaction w.r.t. the set Tk, then we can also extract the
same interaction w.r.t. Tk from the other m − 1 DNNs without a penalty. The ℓ1 norm also makes
that the m DNNs share similar sets of sparse interactions. Considering the sparsity of interactions,
for most subset Tk, the effect I(i)and/or(Tk|x) is supposed to keep almost zero on all m DNNs.

Just like in Equation (4), we decompose the output of the i-th DNN as v(i)and(xT )=0.5v(i)(xT )+γ
(i)
T

and v
(i)
or (xT )=0.5v(i)(xT )−γ

(i)
T to compute two vectors of AND-OR interactions, I(i)and and I

(i)
or .

Redundancy of interactions. However, it is important to emphasize that only penalizing the largest
interaction among the m DNNs in Equation (5) still faces the redundancy problem. Specifically, for
each i-th DNN, we compute a total of 2n AND interactions and 2n OR interactions w.r.t. different
subsets T ⊆ N . Some of these 2n+1 interactions, denoted by the set Ω(i)

max, are selected by the
loss in Equation (5) as the most salient interactions over m DNNs, while the set of other unselected
interactions are denoted by Ω

(i)
others = {T ⊆ N} \ Ω

(i)
max. Then, the redundancy problem is caused

by a short-cut solution to the loss minimization in Equation (5), i.e., using unselected not-so-salient
interactions in Ω

(i)
others to represent numerical effects of selected interactions Ω

(i)
max, as discussed in

Challenge 1 in Section 2.2. As a short-cut solution to Equation (5), this may also reduces the strength
of the penalized salient interactions in Equation (5), but generates lots of redundant interacitons.

Therefore, we revise the loss in Equation (5) to add penalties on unselected interactions to avoid the
short-cut solution with a coefficient of α, as follows7.

min{γ(1)
T ,...,γ

(m)
T } (∥rowmax(Iand)∥1 + ∥rowmax(Ior)∥1) + α (∥Iand∥1 + ∥Ior∥1) , (6)

where α ∈ [0, 1] is a positive scalar. We extend the notation of the ℓ1 norm ∥ · ∥1 to represent the
sum of the absolute values of all elements in a given vector or matrix. It is worth noting that the
generalization power of interactions is guaranteed by the rowmax() function in Equation (5), which
assigns much higher penalties to non-generalizable interactions than generalizable interactions.

Sharing decomposition between DNNs. Optimizing Equation (6) is challenging8. To address this
challenge, we introduce a set of strategies to facilitate the optimization process. We assume that
when all m DNNs are sufficiently trained, these DNNs tend to have similar decompositions of AND
interactions and OR interactions, i.e., obtaining similar parameters, ∀T ⊆ N, γ

(1)
T ≈ γ

(2)
T ≈ · · · ≈

γ
(m)
T . To achieve this, we introduce two types of parameters for γ(i)

T , γ(i)
T = γ̄T + γ̂

(i)
T , where γ̄T

represents the common decomposition shared by all DNNs, and γ̂
(i)
T represents the decomposition

specific to each i-th DNN. We constrain the significance of the unshared decomposition by using
a bound |γ̂(i)

T | < τ
(i)
γ , where τ

(i)
γ = 0.5 · Ex[|v(i)(x) − v(i)(x∅)|]. During the training process, if

|γ̂(i)
T | > τ

(i)
γ , then we set γ̂(i)

T = τ
(i)
γ · sign(γ̂(i)

T ).

7Please see Appendix F for a detailed explanation of Equation (6).
8Note that regardless of whether Equation (6) is optimized to the optimal solution, theoretically, the ex-

tracted AND-OR interactions can still satisfy the property of universal matching in Theorem 2.
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Modeling noises. Furthermore, we have identified a potential limitation in the definition of the
interactions, i.e., the sensitivity to noise. Let us assume that the output of the i-th DNN has
a small noise. We represent such noises by adding a small Gaussian noise ϵT ∼ N (0, σ2) to
the network output v

′(i)
and (xT ) = v

(i)
and(xT ) + ϵ

(i)
T . In this case, we can derive that I

′(i)
and (T ) =

I
(i)
and(T ) +

∑
T ′⊆T (−1)|T |−|T ′|ϵ

(i)
T ′ . We prove that the variance of I

′(i)
and (T ) caused by the Gaus-

sian noises is EϵT∼N (0,σ2)[I
′(i)
and (T ) − E∀S,ϵS∼N (0,σ2)I

′(i)
and (S)]

2 = 2|T |σ2 (please see Appendix D
for details). Similarly, the variance of I ′(i)or (T ) is also 2|T |σ2 for OR interactions. It means that the
variance/instability of interactions increases exponentially with the order of the interaction |T |.

Therefore, we propose to directly learn the error term ϵ
(i)
T based on Equation (6) to remove tiny noisy

signals, which are unavoidable in real data but cannot be modeled as AND-OR interactions, i.e.,
setting v(i)(xT ) = v

(i)
and(xT ) + v

(i)
or (xT ) + ϵ

(i)
T , in order to enhance the robustness of our interaction

extraction process. The error term is constrained to a small range |ϵ(i)T | < τ
(i)
ϵ , subject to τ

(i)
ϵ = 0.02·

|v(i)(x)−v(i)(x∅)|. During the training process, if |ϵ(i)| > τ
(i)
ϵ , then we set |ϵ(i)| = τ

(i)
ϵ · sign(ϵ(i)T ).

Then, we conducted experiments to examine whether the extracted AND-OR interactions could still
accurately explain the network output, when removing the error term. We followed experimental set-
tings in Section 3 to extract interactions on both BERTBASE and BERTLARGE models. We computed
the matching error e(xT ) = |v(xT ) − vapprox(xT )| , where vapprox(xT ) was the network output ap-
proximated by all interactions based on Theorem 2. Figure 13 shows matching errors of all masked
samples w.r.t. all subsets T ⊆ N , when we sorted the network outputs for all 2n masked samples in
a descending order. It shows that the real network output was well approximated by interactions.

3 EXPERIMENT

In this section, we conducted experiments to verify the sparsity and generalization power of the
interaction primitives extracted by our proposed method on the following three tasks.

Task1: sentiment classification with language models. We jointly extracted two sets of AND-OR
interaction primitives from the BERTBASE model and the BERTLARGE model (Devlin et al., 2019) by
following Equation (6). We finetuned the pre-trained BERTBASE model and the BERTLARGE model
on the SST-2 dataset (Socher et al., 2013) for sentiment classification. For each input sentence
x containing n tokens9, we analyzed the log-odds output of the ground-truth label, i.e., v(x) =

log p(y=ytruth|x)
1−p(y=ytruth|x) by following (Deng et al., 2022).

Task2: dialogue task with large language models. We extracted two sets of AND-OR interaction
primitives from the pre-trained LLaMA model (Touvron et al., 2023) and OPT-1.3B model (Zhang
et al., 2022b). We explained the DNNs’ outputs on the SQuAD dataset (Rajpurkar et al., 2016). We
took the first several words of each document in the dataset as the input of a DNN, and let the DNN
predict the next word. For each input sentence x containing n words9, we analyzed the log-odds
output of the (n + 1)-th word that was associated with the highest probability by the DNN, ymax,
i.e., v(x) = log p(y=ymax|x)

1−p(y=ymax|x) .

Task3: image classification task with vision models. We extracted two sets of AND-OR interaction
primitives from the ResNet-20 model (He et al., 2016) and the VGG-16 model (Simonyan & Zisser-
man, 2015), which were trained on the MNIST dataset (LeCun, 1998). These models were trained
to classify the digit “3” from other digits. In practice, considering the 2n computational complexity,
we have followed settings in (Li & Zhang, 2023b), who labeled a few important input patches in
the image as input variables. For each input image x containing n patches9, we analyzed the scalar
output before the softmax layer corresponding to the digit “3.”

Sparsity of the extracted primitives. We aggregated all AND-OR interactions from various sam-
ples, and draw their strength in a descending order in Figure 2. This figure compares the curve of
interaction strength |I(S)|, S ⊆ N between our extracted interactions, the traditional interactions (Li

9Please see Appendix O for details.
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Figure 2: Strength of AND-OR interactions log |I(S|x)| over different samples in a descending
order. All interactions above the dash line had much more significant effect (shown in a log space)
and were considered as salient interactions.
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Figure 3: Generalization power (measured by sand and sor) of the extracted primitives interactions.

& Zhang, 2023b)10(namely, Traditional) and the original Harsanyi interactions (Ren et al., 2023a)
(namely, Harsanyi). The competing method (Li & Zhang, 2023b) (Traditional in Figure 2) extracts
the sparest interactions according to Equation (4), and the original Harsanyi interactions (Ren et al.,
2023a) (Harsanyi in Figure 2) extracts interactions according to Equation (1)11. We found that most
of the interactions had negligible effect. Although the proposed method reduced the sparsity a bit,
the extracted interactions were still sparse enough to be considered as primitive inference patterns.
For each DNN, we further set a threshold τ (i) to collect a set of salient interactions from this DNN
as interaction primitives, i.e., τ (i) = 0.05 ·maxS |I(S|x)|.
Generalization power of the extracted interaction primitives. We took the most salient k inter-
actions from each i-th DNN as the set of AND-OR interaction primitives, i.e., |Ωand, (i)| = |Ωor, (i)| =
k, i ∈ {1, 2}. We used the metric sand and sor in Definition 1 to measure the generalization power of
interactions extracted from two DNNs. Figure 3 shows the generalization power of interactions when
we computed sand and sor based on different numbers k of most salient interactions. We found that
the set of AND-OR interactions extracted from the proposed method exhibited higher generalization
power than interactions extracted from the traditional method.

Low-order interaction primitives are more stable. Furthermore, we compared the ratio of shared
interactions of different orders, i.e., order(S) = |S|. For interactions of each order o, we computed
the overall strength of all positive interactions and that of all negative interactions of the i-th DNN,
which were shared by other DNNs, as Shared+,(i)(o) =

∑
op∈{and,or}

∑
S∈Ω

op,(i)
shared ,|S|=o

max(0, I
(i)
op (S|x))

and Shared−,(i)(o) =
∑

op∈{and,or}
∑

S∈Ω
op,(i)
shared ,|S|=o

min(0, I
(i)
op (S|x)), respectively. Be-

sides, All+,(i)(o) =
∑

op∈{and,or}
∑

S∈Ωop,(i),|S|=o max(0, I
(i)
op (S|x)) and All−,(i)(o) =∑

op∈{and,or}
∑

S∈Ωop,(i),|S|=o min(0, I
(i)
op (S|x)) denote the overall strength of salient positive in-

teractions and that of salient negative interactions, respectively. In this way, Figure 4 reports
(Shared+,(i), Shared−,(i)) and (All+,(i),All−,(i)) for different orders within the three tasks. It
shows that low-order interactions were more likely to be shared by different DNNs than high-order
interactions. Besides, Figure 4 further shows a higher ratio of interactions extracted by the
proposed method were shared by different DNNs than interactions extracted by the traditional
method. In particular, the high similarity of interactions between ResNet-20 and VGG-16 shows
that although two DNNs for the same tasks had fully different architectures, there probably existed
a set of ultimate interactions for a task, and different well-optimized DNNs were likely to converge
to such interactions.

Visualization of the shared interaction primitives across different DNNs. We also visualize the
shared and distinctive interaction primitives in Figure 5. This figure shows that generalizable interac-

10In the implementation of the competing method, we also learned an additional error term ϵ
(i)
T to remove

small noises, just like in Section 2.3.2, to enable fair comparisons.
11Please see Appendix H for more details.
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Figure 4: Overall interactions and shared interactions. The red and black bars show the overall
strength of positive interactions All+,(i)(o) and that of negative interactions All−,(i)(o) of each o-th
order. The orange and green bars indicate the strength of positive interactions that are shared by the
other DNN Shared+,(i)(o) and that of the shared negative interactions Shared−,(i)(o), respectively.
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Figure 5: Visualization of the shared and distinctive interaction primitives across different DNNs.
We selected some of salient interactions from the most salient k = 50 AND-OR interactions in each
DNN. The black and gray color show the AND interactions and the OR interactions, respectively.
The left and right column show the distinctive interactions extracted from the BERTBASE model and
the BERTLARGE model, respectively. The middle column shows the shared interactions extracted
from both models. Please see Appendix J for more interactions.

tions shared by different models can be regarded as more reliable concepts, which consistently con-
tribute salient interaction effects to the output of different DNNs. In comparison, non-generalizable
interactions, which are sometimes over-fitted by a single model, may appear as out-of-distribution
features. From this pespective, we consider generalizable interactions as relatively faithful concepts
that often have a significant impact on the inference of DNNs. Figure 5 further shows that, our
method extracted much more shared interactions than the traditional interaction-extraction method,
which shows that our method could obtain more stable explanation of the inference logic of a DNN.
It is because the interactions shared by different DNNs were usually considered more faithful.

4 CONCLUSION

In this paper, we proposed a method to extract generalizable interaction primitives. The sparsity
and universal-matching property of interactions provide lots of evidence to faithfully explain DNNs
with interactions. Thus, in this paper, we propose to further improve the generalization power of in-
teractions, which adds the last piece of the puzzle of interaction primitives. Compared to traditional
interactions, interactions shared by different DNNs are more likely to be the underlying primitives
that shape the DNN’s output. Furthermore, the extraction of interaction primitives also contributes
to real applications. For example, it can assist in learning optimal baseline values for Shapley values
(Ren et al., 2023b) and explaining the representation limits of Bayesian networks (Ren et al., 2023c).
In addition, the extraction of generalizable interaction primitives shared by different DNNs provide
a new perspective to formulating the out-of-distribution (OOD) features. Previous studies usually
treated an entire sample as an OOD sample, whereas our work redefines the OOD problem at the
level of detailed interactions, i.e., unshared interactions can be regarded as OOD information.
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A PREVIOUS LITERATURE OF USING INTERACTIONS TO EXPLAIN DNNS

Explaining the knowledge encoded by DNNs is one of the ultimate goals of explainable AI but
presents significant challenges. For instance, some studies employed visualization techniques to
show the patterns learned by a DNN (Simonyan et al., 2013; Yosinski et al., 2015), and some focused
on extracting feature vectors that may be associated with semantic concepts (Simonyan et al., 2013),
while some studies learned feature vectors potentially related to concepts (Kim et al., 2018). Dravid
et al. (2023) identified convolutional kernels in different DNNs that expressed similar concepts.

However, theoretically, whether the knowledge or the complex inference logic of a DNN can be
faithfully represented as symbolic primitive inference patterns still presents significant challenges.
Up to now, there is still no universally accepted definition of the knowledge, as it encompasses var-
ious aspects of cognitive science, neuroscience, and mathematics. However, if we ignore cognitive
and neuroscience aspects, Ren et al. (2023a) have proposed to quantify interactions between input
variables encoded by the DNN, to explain the knowledge in the DNN. More crucially, Ren et al.
(2024) have derived several theorems as mathematical evidence of considering such interactions as
primitive inference patterns encoded by a DNN. Specifically, Ren et al. (2024) proved that DNNs
usually only encoded a small number of interactions, under some common conditions2. Besides,
these interactions can universally explain the DNN’s output score on any arbitrary masked input
samples. Li & Zhang (2023b) further discovered the discriminative power of certain interactions.

Besides, Deng et al. (2024) found that different attribution scores estimated by different attribution
methods could all be represented as a combination of different interactions. Zhang et al. (2022a)
used interactions to explain the mechanism of different methods of boosting adversarial transferabil-
ity. Ren et al. (2023b) used interactions to define the optimal baseline value for computing Shapley
values. Deng et al. (2022) found that for most DNNs it was difficult to learn interactions with me-
dian number of input variables, and it was discovered that DNNs and Bayesian neural networks
were unlikely to model complex interactions with many input variables (Ren et al., 2023c; Liu et al.,
2024). Zhou et al. (2024) used the generalization power of different interactions to explain the
generalization power of DNNs.

B THE CONDITIONS FOR UNIVERSAL MATCHING OF THE DNN OUTPUT

Ren et al. (2024) have proved that a well-trained DNN usually just encodes a limited number of
interactions. More importantly, one can just use a few interactions to approximate the DNN’s outputs
on all 2n masked samples {xS |S ⊆ N}, under the following three common assumptions. (1) The
high order derivatives of the DNN output with respect to the input variables are all zero. (2) The
DNN works well on the masked samples, and yield higher confidence when the input sample is less
masked. (3) The confidence of the DNN does not drop significantly on the masked samples. With
these natural assumptions, a well-trained DNN’s output on all 2n masked samples can be universally
approximated by the sum of just a few salient interactions in Ω, s.t., |Ω| ≪ 2n.

C PROOF OF THEOREMS

Theorem 2 (Universal matching theorem) Let us be given a DNN v and an input sample x. For each
randomly masked sample xT , T ⊆ N , we obtain

v(xT ) = vand(xT ) + vor(xT ) =
∑

S⊆T
Iand(S|xT ) +

∑
S∈{S:S∩T ̸=∅}∪{∅}

Ior(S|xT ). (7)

Proof. (1) Universal matching theorem of AND interactions.

Ren et al. (2023a) have used the Haranyi dividend (Harsanyi, 1963) Iand(S|x) to state the universal
matching theorem of AND interactions. The output of a well-trained DNN on all 2n masked samples
{xT |T ⊆ N} could be universally explained by the all interaction primitives in T ⊆ N , i.e.,
∀T ⊆ N, vand(xT ) =

∑
S⊆T Iand(S|x).

Specifically, the AND interaction is defined as Iand(S|x) :=
∑

L⊆S(−1)|S|−|L|vand(xL)

in Equation (1). To compute the sum of AND interactions ∀T ⊆ N,
∑

S⊆T Iand(S|x) =

12



Published as a conference paper at ICLR 2024

∑
S⊆T

∑
L⊆S(−1)|S|−|L|vand(xL), we first exchange the order of summation of the set L ⊆

S ⊆ T and the set S ⊇ L. That is, we compute all linear combinations of all sets S con-
taining L with respect to the model outputs vand(xL) given a set of input variables L, i.e.,∑

S:L⊆S⊆T (−1)|S|−|L|vand(xL). Then, we compute all summations over the set L ⊆ T .

In this way, we can compute them separately for different cases of L ⊆ S ⊆ T . In the following,
we consider the cases (1) L = S = T , and (2) L ⊆ S ⊆ T, L ̸= T , respectively.

(1) When L = S = T , the linear combination of all subsets S containing L with respect to the
model output vand(xL) is (−1)|T |−|T |vand(xL) = vand(xL).

(2) When L ⊆ S ⊆ T, L ̸= T , the linear combination of all subsets S containing L with respect
to the model output vand(xL) is

∑
S:L⊆S⊆T (−1)|S|−|L|vand(xL). For all sets S : T ⊇ S ⊇ L,

let us consider the linear combinations of all sets S with number |S| for the model output vand(xL),
respectively. Let m := |S|−|L|, (0 ≤ m ≤ |T |−|L|), then there are a total of Cm

|T |−|L| combinations
of all sets S of order |S|. Thus, given L, accumulating the model outputs vand(xL) corresponding

to all S ⊇ L, then
∑

S:L⊆S⊆T (−1)|S|−|L|vand(xL) = vand(xL) ·
∑|T |−|L|

m=0
Cm

|T |−|L|(−1)m︸ ︷︷ ︸
=0

= 0.

Please see the complete derivation of the following formula.

∑
S⊆T

Iand(S|xT ) =
∑

S⊆T

∑
L⊆S

(−1)|S|−|L|vand(xL)

=
∑

L⊆T

∑
S:L⊆S⊆T

(−1)|S|−|L|vand(xL)

= vand(xT )︸ ︷︷ ︸
L=T

+
∑

L⊆T,L ̸=T
vand(xL) ·

∑|T |−|L|

m=0
Cm

|T |−|L|(−1)m︸ ︷︷ ︸
=0

= vand(xT ).

(8)

(2) Universal matching theorem of OR interactions.

According to the definition of OR interactions in Section 2.1, we will derive that ∀T ⊆ N, vor(xT ) =∑
S∈{S:S∩T ̸=∅}∪{∅} Ior(S|xT ) = Ior(∅|xT ) +

∑
S:S∩T ̸=∅ Ior(S|xT ), s.t., Ior(∅|xT ) = vor(x∅).

Specifically, the OR interaction is defined as Ior(S|x) := −
∑

L⊆S(−1)|S|−|L|vor(xN\L)
in Equation (2). Similar to the above derivation of the universal matching theorem of AND
interactions, to compute the sum of OR interactions ∀T ⊆ N,

∑
S:S∩T ̸=∅ Ior(S|xT ) =∑

S:S∩T ̸=∅

[
−
∑

L⊆S(−1)|S|−|L|vor(xN\L)
]
, we first exchange the order of summation of the set

L ⊆ S ⊆ N and the set S : S ∩ T ̸= ∅. That is, we compute all linear combinations of all sets
S containing L with respect to the model outputs vor(xN\L) given a set of input variables L, i.e.,∑

S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xN\L). Then, we compute all summations over the set L ⊆ N .

In this way, we can compute them separately for different cases of L ⊆ S ⊆ N,S ∩ T ̸= ∅. In
the following, we consider the cases (1) L = N \ T , (2) L = N , (3) L ∩ T ̸= ∅, L ̸= N , and (4)
L ∩ T = ∅, L ̸= N \ T , respectively.

(1) When L = N \T , the linear combination of all subsets S containing L with respect to the model
output vor(xN\L) is

∑
S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xN\L) =

∑
S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xT ).

For all sets S : S ⊇ L, S ∩ T ̸= ∅ (then S ̸= N \ T, S ̸= L), let us consider the lin-
ear combinations of all sets S with number |S| for the model output vor(xT ), respectively. Let
|S′| := |S| − |L|, (1 ≤ |S′| ≤ |T |), then there are a total of C |S′|

|T | combinations of all sets S of
order |S|. Thus, given L, accumulating the model outputs vor(xT ) corresponding to all S ⊇ L, then∑

S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xN\L) = vor(xT ) ·
∑|T |

|S′|=1
C

|S′|
|T | (−1)|S

′|︸ ︷︷ ︸
=−1

= −vor(xT ).
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(2) When L = N (then S = N ), the linear combination of all subsets S containing L with respect
to the model output vor(xN\L) is

∑
S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xN\L) = (−1)|N |−|N |vor(x∅) =

vor(x∅).

(3) When L ∩ T ̸= ∅, L ̸= N , the linear combination of all subsets S containing L with
respect to the model output vor(xN\L) is

∑
S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xN\L). For all sets

S : S ⊇ L, S ∩ T ̸= ∅, let us consider the linear combinations of all sets S with num-
ber |S| for the model output vor(xT ), respectively. Let us split |S| − |L| into |S′| and |S′′|,
i.e.,|S| − |L| = |S′|+ |S′′|, where S′ = {i|i ∈ S, i /∈ L, i ∈ N \ T}, S′′ = {i|i ∈ S, i /∈ L, i ∈ T}
(then 0 ≤ |S′′| ≤ |T | − |T ∩ L|) and S′ + S′′ + L = S. In this way, there are a total of
C

|S′′|
|T |−|T∩L| combinations of all sets S′′ of order |S′′|. Thus, given L, accumulating the model

outputs vor(xN\L) corresponding to all S ⊇ L, then
∑

S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xN\L) =

vor(xN\L) ·
∑

S′⊆N\T\L

∑|T |−|T∩L|

|S′′|=0
C

|S′′|
|T |−|T∩L|(−1)|S

′|+|S′′|︸ ︷︷ ︸
=0

= 0.

(4) When L ∩ T = ∅, L ̸= N \ T , the linear combination of all subsets S containing L with
respect to the model output vor(xN\L) is

∑
S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xN\L). Similarly, let us

split |S|−|L| into |S′| and |S′′|, i.e.,|S|−|L| = |S′|+|S′′|, where S′ = {i|i ∈ S, i /∈ L, i ∈ N \T},
S′′ = {i|i ∈ S, i ∈ T} (then 0 ≤ |S′′| ≤ |T |) and S′ + S′′ + L = S. In this way, there are a total
of C |S′′|

|T | combinations of all sets S′′ of order |S′′|. Thus, given L, accumulating the model outputs
vor(xN\L) corresponding to all S ⊇ L, then

∑
S:S∩T ̸=∅,S⊇L(−1)|S|−|L|vor(xN\L) = vor(xN\L) ·∑

S′⊆N\T\L

∑|T |

|S′′|=0
C

|S′′|
|T | (−1)|S

′|+|S′′|︸ ︷︷ ︸
=0

= 0.

Please see the complete derivation of the following formula.

∑
S:S∩T ̸=∅

Ior(S|xT ) =
∑

S:S∩T ̸=∅

[
−
∑

L⊆S
(−1)|S|−|L|vor(xN\L)

]
= −

∑
L⊆N

∑
S:S∩T ̸=∅,S⊇L

(−1)|S|−|L|vor(xN\L)

= −

 |T |∑
|S′|=1

C
|S′|
|T | (−1)|S

′|

 · vor(xT )︸ ︷︷ ︸
L=N\T

− vor(x∅)︸ ︷︷ ︸
L=N

−
∑

L∩T ̸=∅,L ̸=N

 ∑
S′⊆N\T\L

|T |−|T∩L|∑
|S′′|=0

C
|S′′|
|T |−|T∩L|(−1)|S

′|+|S′′|

 · vor(xN\L)

−
∑

L∩T=∅,L ̸=N\T

 ∑
S′⊆N\T\L

 |T |∑
|S′′|=0

C
|S′′|
|T | (−1)|S

′|+|S′′|

 · vor(xN\L)

= −(−1) · vor(xT )− vor(x∅)−
∑

L∩T ̸=∅,L ̸=N

 ∑
S′⊆N\T\L

0

 · vor(xN\L)

−
∑

L∩T=∅,L ̸=N\T

 ∑
S′⊆N\T\L

0

 · vor(xN\L)

= vor(xT )− vor(x∅)
(9)

(3) Universal matching theorem of AND-OR interactions.

With the universal matching theorem of AND interactions and the universal matching theorem
of OR interactions, we can easily get v(xT ) = vand(xT ) + vor(xT ) =

∑
S⊆T Iand(S|xT ) +∑

S∈{S:S∩T ̸=∅}∪{∅} Ior(S|xT ), thus, we obtain the universal matching theorem of AND-OR in-
teractions.
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Theorem 3 (proved by Harsanyi (1963)). The Shapley value ϕ(i) of an input variable i can be
explained as a uniform allocation of the AND interactions, i.e., ϕ(i) =

∑
S⊆N :S∋i

1
|S|Iand(S|x).

D PROOF OF THE VARIANCE OF AND AND OR INTERACTIONS

In this section, we prove that the variance of I ′(i)and (T ) caused by the Gaussian noises ϵ(i)T ∼ N (0, σ2)

is EϵT∼N (0,σ2)[I
′(i)
and (T )− E∀S,ϵS∼N (0,σ2)I

′(i)
and (S)]

2 = 2|T |σ2 in Section 2.3.2.

Proof. Given I
′(i)
and (T ) = I

(i)
and(T ) +

∑
T ′⊆T (−1)|T |−|T ′|ϵ

(i)
T ′ , the variance of I

′(i)
and (T ) is

Var(I ′(i)and (T )) = Var(I(i)and(T ) +
∑

T ′⊆T (−1)|T |−|T ′|ϵ
(i)
T ′ ). As the AND interaction I

(i)
and(T ) and the

Gaussian noise ϵ
(i)
T are independent of each other, then the variance of I ′(i)and (T ) can be decomposed

to Var(I ′(i)and (T )) = Var(I(i)and(T )) + Var(
∑

T ′⊆T (−1)|T |−|T ′|ϵ
(i)
T ′ ) = Var(

∑
T ′⊆T (−1)|T |−|T ′|ϵ

(i)
T ′ ),

this is because here I
(i)
and(T ) can be regarded as a constant.

Since each Gaussian noise ϵ
(i)
T ∼ N (0, σ2),∀T ⊆ N is independent and identically distributed,

then the variance is Var(I ′(i)and (T )) = Var(
∑

T ′⊆T (−1)|T |−|T ′|ϵ
(i)
T ′ ) = Var(ϵ(i)T ′

1
) + Var(ϵ(i)T ′

2
) + · · · +

Var(ϵ(i)T ′
2|T |

) = 2|T | · σ2 (there are a total of 2|T | subsets for T ′ ⊆ T ).

E THE FAITHFULNESS OF THE SPARSITY AND UNIVERSAL-MATCHING.

This section further demonstrates the faithfulness of the sparsity and universal-matching theorem of
AND-OR interactions, both theoretically and experimentally.

Theoretically, the faithfulness of the sparsity and universal-matching theorem of AND-OR inter-
actions means that, given an input sample with n variables, we must prove that (1) a well-trained
DNN usually just encodes a small number of salient interactions Ω (Ren et al., 2024), comparing
with all 2n potential combinations of the input variables in a given input sample, i.e., |Ω| ≪ 2n, and
that (2) the network output v(xS) on all 2n randomly masked samples {xS |S ⊆ N} can be well
matched by a few interactions in Ω = {S ⊆ N : |I(S|x)| > τ} as defined in the Definition of
interaction primitives in Section 2.1. These two terms have been proved in Theorem 1, Theorem 2
and Proposition 1.

Then, in practice, considering the 2n computational complexity, we have followed settings in (Li
& Zhang, 2023b) to extract interactions between a set of randomly selected input variables N =
{1, 2, . . . , t}, (t < n), while other unselected (n− t) input variables remain unmasked, leaving the
original state unchanged. In this case, faithfulness does not mean that our interactions explain all the
inference logic encoded between all n input variables for a given sample x in the pre-trained DNN.
Instead, it only means that the extracted interactions can also accurately match the inference logic
encoded between the selected t input variables for a given sample x in the DNN.

Experimental verification. In addition, we have further conducted an experiment to verify the
faithfulness when we explain interactions between all input variables. To this end, for the senti-
ment classification task on the SST-2 dataset in BERTBASE, we selected sentences containing 15
tokens to verify the faithfulness of the sparsity in Proposition 1 and the universal-matching prop-
erty in Theorem 2. All tokens are selected as input variables. We focused on the matching er-
rors for all masked samples xT ,∀T ⊆ N . Specifically, we observed whether the real network
output on the masked sample v(xT ),∀T ⊆ N can be well approximated by interactions. We
have verified that the extracted salient interactions in Ω faithfully explain the network output, i.e.,
∀T ⊆ N, v(xT ) ≈ v(x∅) +

∑
∅̸=S⊆T :S∈Ωand Iand(S|xT ) +

∑
S∩T ̸=∅:S∈Ωor Ior(S|xT ). Figure 6 il-

lustrates that network output v(xT ),∀T ⊆ N on all 2n randomly masked samples can be well fitted
by interactions.
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Figure 6: Universal matching of all interaction primitives to the DNN’s output, when we use salient
interactions to match the DNN’s output. Shade area indicates the matching error of different v(xT ).

F DETAILED EXPLANATION OF EQUATION (6)

This section uses a simple example to illustrate Equation (6) more clearly. Let us illustrate
how the interaction matrices are formatted in a toy example. Let us consider two pre-trained
DNNs v(1), v(2) and an input sample x with N = {1, 2} variables, and take the AND in-
teraction matrix Iand in Equation (6) as an example (the OR interaction matrix Ior can be ob-
tained similarly). First, we get all 22 AND interactions extracted from the i-th model I

(i)
and =

[Iand(T1|x), Iand(T2|x), Iand(T3|x), Iand(T4|x)]⊺ ∈ R22 , according to the description of Equa-
tion (4). Here, each interaction value Iand(Tk|x) ∈ R, Tk ⊆ N denotes the interaction value of
each masked sample xTk

, which is computed according to Equation (1). Second, the AND inter-
action matrix Iand =

[
I
(1)
and, I

(2)
and

]
∈ R22×2 represents the interaction values corresponding to the 22

masked samples for each of the two models.

Let us illustrate how to learn the parameter γ(i)
T in Equation (6). The loss in Equation (6) in the

above example can be represented as the function of {γT }, as follows.

Loss = min{γ(1)
Tk

,γ
(2)
Tk

} (∥rowmax(Iand)∥1 + ∥rowmax(Ior)∥1) + α (∥Iand∥1 + ∥Ior∥1)

= min{γ(1)
Tk

,γ
(2)
Tk

}

∑
Tk⊆N

|max(
∑

T⊆S
(−1)|S|−|T |[0.5 · v(1)(xTk ) + γ

(1)
Tk

],
∑

T⊆S
(−1)|S|−|T |[0.5 · v(2)(xTk ) + γ

(2)
Tk

])|

+
∑

Tk⊆N

|max(−
∑

T⊆S
(−1)|S|−|T |[0.5 · v(1)(xN\Tk

)− γ
(1)
Tk

],−
∑

T⊆S
(−1)|S|−|T |[0.5 · v(2)(xN\Tk

)− γ
(2)
Tk

])|

+ α ·
∑

Tk⊆N

2∑
i=1

|
∑

T⊆S
(−1)|S|−|T |[0.5 · v(i)(xTk ) + γ

(i)
Tk

]|

+ α ·
∑

Tk⊆N

2∑
i=1

| −
∑

T⊆S
(−1)|S|−|T |[0.5 · v(i)(xN\Tk

)− γ
(i)
Tk

])|.

(10)

Therefore, we only need to optimize {γ(1)
Tk

, γ
(2)
Tk

} via gradient descent to reduce the loss in Equa-
tion (6).

G THE RUN-TIME COMPLEXITY

This section explores the run-time complexity of extracting AND-OR interactions on different tasks.
Theoretically, given an input sample with n input variables, the time complexity is 2n, and we need
to generate masked samples for model inference. Fortunately, the variable number is not too large
by following the settings in (Li & Zhang, 2023b) and (Shen et al., 2023). In real applications,
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Table 1: Average run-time per sample on different tasks.

sentiment classification
on the SST-2 dataset

w.r.t. the pair of models
(BERTBASE and BERTLARGE)

dialogue task
on the SQuAD dataset
w.r.t. the pair of models
(LLaMA and OPT-1.3B)

image classification
on the MNIST dataset

w.r.t. the pair of models
(ResNet-20 and VGG-16)

45.14 seconds 46.61 seconds 27.15 seconds

the average running time for a sentence in the SST-2 dataset on the BERTLARGE model is 45.14
seconds. Table 1 further shows the average running time of each input sample for different tasks.

H MORE BASELINE TO VERIFY THE EFFECTIVENESS OF EQUATION (6)

To further verify the effectiveness of the interactions extracted from Equation (6), we conducted
experiments on more baseline, namely the original Harsanyi interaction (Ren et al., 2023a). We
compared the sparsity and the generalization power of the AND interactions extracted from different
DNNs. Figure 7 shows that the interactions extracted by our method exhibit higher sparsity and
generalization power compared to the original AND interactions.

To enable fair comparisons, we double the number of Harsanyi interactions extracted from a sample
by setting I ′(S|x) = I(S|x). Thus, we congregate both sets of interactions (a total of 2 · 2n
interactions) to draw a curve in Figure 2 and Figure 3. In this way, we can compare the same
number of interactions over different methods.

BERTBASE BERTLARGE
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Figure 7: Comparing the sparsity and generalization power of the extracted interactions between the
original Harsanyi interactions and our proposed method.

I ABLATION STUDY OF THE PARAMETER α IN EQUATION (6)

To explore the effect of α on the AND-OR interactions extracted from Equation (6), we conducted
an ablation study on α. Specifically, we jointly extracted two sets of AND-OR interactions from
the BERTBASE and BERTLARGE models, which were trained by (Devlin et al., 2019) and further
finetuned by us for sentiment classification on the SST-2 dataset. For comparison, we set the value
of α to [0, 0.2, 0.4, 0.6, 0.8, 1.0], respectively. Here, when α = 0, Equation (6) degenerated into
Equation (5), indicating that only the largest interactions among the m DNNs were penalized. As
α increases, the effects of not-so-salient interactions in other models were taken into account. Fig-
ure 8 shows that as the value of α increases, the sparsity of the extracted interactions did not increase
too much, but the generalization power of the extracted interactions decreased. This shows the ef-
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Figure 8: Effect of α on the AND-OR interactions extracted from Equation (6). (a) Strength of all
interactions extracted from all samples, which were sorted in a descending order. The increase of
different α value did not significantly affect the sparsity of interactions. (b) Decreasing generaliza-
tion power of extracted AND-OR interactions, when the α value increased.

fectiveness of the penalty in Equation (5) in boosting the generalization power without significantly
hurting the sparsity.

J VISUALIZATION OF MORE SHARED AND DISTINCTIVE INTERACTION
PRIMITIVES FOR FIGURE 5

In this section, we visualized all shared and distinctive interaction primitives across different DNNs
in Figure 5. Specifically, we randomly selected 10 tokens in the given sentence, labeling these 10
tokens in red and the other unselected tokens in black. Here, n = 10 input variables denote the
embeddings corresponding to these 10 tokens. Since each input variable has two states, masked and
unmasked, a total of 210 masked samples are generated. Then, according to Equations (1) and (2), a
total of 2 · 210 AND interactions and OR interactions are finally obtained.

Then, we extracted the most salient k = 50 interactions from a total of 2 · 210 AND interactions and
OR interactions as the set of AND-OR interaction primitives in each DNN, respectively. Therefore,
in our proposed method, 25 shared interactions were extracted from both models, and 25 distinctive
interactions were extracted from the BERTBASE and BERTLARGE models, respectively. In contrast,
in the traditional method, 16 shared interactions were extracted from both models, and 34 distinctive
interactions were extracted from the BERTBASE and BERTLARGE models, respectively.

In addition, Figure 9 shows the strength of the interaction value |I(S|x)| for each salient interaction.
Specifically, we show the strength of the interaction value for each distinctive interaction in each
DNN. We also show the strengths of two interaction values for each shared interaction extracted from
both DNNs, where the strength of the interaction value on the BERTBASE model is on the left and the
strength of the interaction value on the BERTLARGE model is on the right. Figure 9 illustrates that,
our method extracted more shared interactions compared to the traditional interaction-extraction
method.

K DISCUSSION ON THE DIFFERENCES IN THE SIMILARITY OF INTERACTIONS

This section compares the consistency of interactions between different types of DNNs. Since
LLaMA (Touvron et al., 2023) and OPT-1.3B (Zhang et al., 2022b) have much more parameters
than BERTBASE and BERTLARGE (Devlin et al., 2019), it is often widely believed that these two
LLMs can better converge to the true language knowledge in the training data.

We can roughly understand this phenomenon by clarifying the following two phenomena. First,
through extensive experiments, the authors have found that the learning of a DNN usually has two
phases, i.e., the learning of new interactions and the forgotten of incorrectly learned interactions
(this is our on-going research). In most cases, after the forgetting phase, the remained interactions
of an LLM are usually shared by other LLMs. The high similarity of interactions between LLMs
has also been observed in (Shen et al., 2023).
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The Ring just left me cold and wet like I was out in the Seattle dr-iz-zle without rain-wear.
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Figure 9: Visualization of more shared and distinctive interaction primitives for Figure 5.

Second, compared to LLMs, relatively small models are less powerful to remove all incorrectly
learned interactions. For example, a simple model is usually less powerful to regress a complex
function. The less powerful models (BERTBASE and BERTLARGE) are not powerful enough to accu-
rately encode the potentially complex interactions.

Therefore, small models are more likely to represent various incorrect interactions to approximate
the true target of the task. This may partially explains the high difficulty of extracting common
interactions from two BERT models, as well as why the proposed method shows more improvements
in the generalization power of interactions on BERT models.

Experimental verification. To this end, we have further conducted a new experiment to compare the
interactions extracted from two LLMs, i.e., LLaMA (Touvron et al., 2023) and Aquila-7B (BAAI,
2023). As Figure 10 shows, two LLMs usually encode much more similar interactions than two
not-so-large models. In fact, we have also observed similar interactions in anther pair of LLMs, i.e.,
LLaMA and OPT-1.3B (Zhang et al., 2022b) (please see Figure 4). This partially explains the reason
why the performance improvement of these two LLMs is similar to that of LLaMA and OPT-1.3B.

L A CONCRETE EXAMPLE TO ILLUSTRATE THE PROCEDURE

Let us use a concrete input sentence with six tokens to illustrate the experimental procedure from
beginning to end.

Step 1: Given the sentence “A stitch in time saves nine” with six tokens, the six input variables are
x1 = embedding of token “A”, x2 = embedding of token “stitch”, x3 = embedding of token “in”,
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Figure 10: Differences of interactions between different types of DNNs.

x4 = embedding of token “time”, x5 = embedding of token “saves”, and x6 = embedding of token
“nine”. Although the dimensions of the embedding for the BERTBASE and BERTLARGE models are
different, we can still compute the interactions between the embeddings corresponding to the same
token. Specifically, the embedding xi of a token in the BERTBASE model is xi ∈ R768, and the
embedding xi of a token in the BERTLARGE model is xi ∈ R1024.

Step 2: The baseline value for each input variable is b1 = b2 = b3 = b4 = b5 = b6 = special
embedding of a masked token, where the special embedding of the masked token is encoded by the
BERTBASE and BERTLARGE model, respectively. This special embedding can use the embedding of a
special token, e.g., the embedding of the [CLS] token. Specifically, the baseline bi in the BERTBASE
model is bi ∈ R768, and the baseline bi in the BERTLARGE model is bi ∈ R1024.

Step 3: In this case, there are a total of 26 masked samples xT0
,xT1

,xT2
,xT3

, · · · ,xT62
,xT63

used for the model inference. Specifically, the first masked sample is xT0
= {b1, b2, b3, b4, b5, b6},

where each of its input variables (embedding) is replaced with the corresponding baseline value
(embedding of a special token), i.e., xi = bi, i ∈ {1, 2, · · · , 6}. The second masked sample is
xT1 = {b1, b2, b3, b4, b5, x6}, where its input variable x6 is kept as the original embedding, and the
other five input variables are replaced with the corresponding baseline values, i.e., x1 = b1, x2 =
b2, x3 = b3, x4 = b4, x5 = b5. The third masked sample is xT2

= {b1, b2, b3, b4, x5, b6}, where its
input variable x5 is kept as the original embedding, and the other five input variables are replaced
with the corresponding baseline values, i.e., x1 = b1, x2 = b2, x3 = b3, x4 = b4, x6 = b6. The
fourth masked sample is xT3

= {b1, b2, b3, b4, x5, x6}, where its input variables x5 and x6 are kept
as the original embedding, respectively, and the other four input variables are replaced with the cor-
responding baseline values. Similarly, the 63rd masked sample is xT62

= {x1, x2, x3, x4, x5, b6},
where its input variables x1, x2, x3, x4, x5 are kept as the original embedding, respectively, and
x6 = b6. The 64th masked sample is xT63 = {x1, x2, x3, x4, x5, x6}, where all input variables are
kept unchanged from the original embedding.

Step 4: For each masked sample xTj
, j ∈ {0, 1, · · · , 63}, we computed the log-odds output of the

ground-truth label v(xTj
) = log

p(y=y truth|xTj
)

1−p(y=y truth|xTj
)
∈ R as the model output. In this way, feeding all

masked samples xTj
into the BERTBASE model produced a total of 26 model outputs vBASE(xT0

),
vBASE(xT1

), · · · ,vBASE(xT63
). Feeding all masked samples xTj

into the BERTLARGE model pro-
duced a total of 26 model outputs vLARGE(xT0

), vLARGE(xT1
), · · · ,vLARGE(xT63

).

Step 5: Computed the AND outputs vBASE
and (xTj

) = 0.5vBASE(xTj
) + γBASE

Tj
, j ∈ {0, 1, · · · , 63}

and the OR outputs vBASE
or (xTj ) = 0.5vBASE(xTj ) − γBASE

Tj
, j ∈ {0, 1, · · · , 63} for the BERTBASE

model, respectively. Computed the AND outputs vLARGE
and (xTj ) = 0.5vLARGE(xTj ) + γLARGE

Tj
, j ∈

{0, 1, · · · , 63} and the OR outputs vLARGE
or (xTj

) = 0.5vLARGE(xTj
) − γLARGE

Tj
, j ∈ {0, 1, · · · , 63}

for the BERTLARGE model, respectively.

Step 6: Computed the AND interactions IBASE
and (Tj |x) =

∑
T⊆Tj

(−1)|Tj |−|T |vBASE
and (xT ), j ∈

{0, 1, · · · , 63} and the OR interactions IBASE
or (Tj |x) = −

∑
T⊆Tj

(−1)|Tj |−|T |vBASE
or (xN\T ), j ∈

{0, 1, · · · , 63} for the BERTBASE model, respectively. Computed the AND interactions
ILARGE

and (Tj |x) =
∑

T⊆Tj
(−1)|Tj |−|T |vLARGE

and (xT ), j ∈ {0, 1, · · · , 63} and the OR interactions
ILARGE

or (Tj |x) = −
∑

T⊆Tj
(−1)|Tj |−|T |vLARGE

or (xN\T ), j ∈ {0, 1, · · · , 63} for the BERTLARGE

model, respectively.
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Table 2: Diversity of two sets of interactions, which are extracted based on Equation (4) from the
same models but with different initialized parameters {γT }.

DNNs Sand Sor

BERTBASE 10.90% 16.18%
BERTLARGE 17.84% 20.90%

Step 7: Learned the parameters γBASE
Tj

and γLARGE
Tj

, j ∈ {0, 1, · · · , 63} using the loss in Equation
(6). Went back to Step 5 and repeated the iterations until the loss converges.

Step 8: Computed the final AND interactions IBASE
and (Tj |x) and the final OR interactions

IBASE
or (Tj |x), j ∈ {0, 1, · · · , 63} for the BERTBASE model using the learnable parameters γBASE

Tj
, j ∈

{0, 1, · · · , 63}. The final salient interactions of the BERTBASE model are obtained from all 26 inter-
actions, where the final salient interactions are those with interaction values greater than the thresh-
old τBASE, ΩBASE = {Tj ⊆ N : |IBASE

and/or(Tj |x)| > τBASE}.

Computed the final AND interactions ILARGE
and (Tj |x) and the final OR interactions ILARGE

or (Tj |x), j ∈
{0, 1, · · · , 63} for the BERTLARGE model using the learnable parameters γLARGE

Tj
, j ∈

{0, 1, · · · , 63}. The final salient interactions of the BERTLARGE model are obtained from all 26
interactions, where the final salient interactions are those with interaction values greater than the
threshold τLARGE, ΩLARGE = {Tj ⊆ N : |ILARGE

and/or (Tj |x)| > τLARGE}.

M MATCHING PRECISION OF AND-OR INTERACTIONS

In this section, we conducted experiments to show the matching precision of the interactions used for
matching the network output. Specifically, we extracted traditional AND-OR interaction primitives
using various DNNs trained on different datasets following the settings in (Li & Zhang, 2023b).
Then, we used the metric m =

∑
S∈{top k interactions} |I(S)|∑

S∈{top k interactions} |I(S)|+|v(N)−v(∅)−
∑

S∈{top k interactions} I(S)| to measure
the matching precision of the salient interactions. Figure 11 shows the matching precision of the in-
teractions when we computed m based on different numbers k of most salient interactions. We found
that only a few salient interactions were required to achieve a relatively high matching precision.
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Figure 11: Matching precision of the interactions used for matching the network output.

N MORE EXPERIMENTS

N.1 OPTIMIZING THE LOSS IN EQUATION (4) MAY LEAD TO DIVERSE SOLUTIONS

In Section 2.3.1, we mentioned that optimizing the loss in Equation (4) may lead to diverse solutions.
Given different initial states, optimizing the loss in Equation (4) usually extracted two different sets
of AND-OR interactions. In particular, as shown in Table 2, when we set the initial state of two
sets of parameters {γT } as γT ∼ N (0, 1), the loss in Equation (4) would learned dramatically
different interactions with only 21% overlap. Figure 12 further shows the top 5 AND-OR interaction
primitives extracted from BERTLARGE model on an input sentence. Both experiments illustrate that
given different initial states, the loss in Equation (4) may learn different AND-OR interactions.
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Figure 12: Top 5 AND-OR interaction primitives extracted from BERTLARGE model, when optimiz-
ing the loss in Equation (4) given different initial states.

N.2 EXAMINING WHETHER THE INTERACTIONS CAN EXPLAIN THE NETWORK OUTPUT

In Section 2.3.2, we mentioned to conduct experiments to examine whether the extracted AND-OR
interactions could still accurately explain the network output, when we removed the error term. Fig-
ure 13 shows matching errors of all masked samples for all subsets T ⊆ N , when we sorted the
network outputs for all 2n masked samples in a descending order. It shows that the real network
output was well approximated by interactions.
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Figure 13: Universal matching of interaction primitives to the DNN’s output. Shade area indicates
the matching error of different v(xT ).

O EXPERIMENTAL DETAILS

O.1 PERFORMANCE OF DNNS

In Section 3, we conducted experiments using several DNNs trained on different types of datasets,
including the language and image datasets. In the sentiment classification task, we fintuned the
pretrained models, BERTBASE and BERTLARGE, using the SST-2 dataset. For image classification
task, we trained ResNet-20 and VGG-16 with the MNIST-3 dataset. Table 3 reports the classification
accuracy of the aforementioned DNNs. For the dialogue task, we used the pretrained models, the
LLaMA model and OPT-1.3B model, directly.

Table 3: Classification accuracy of different DNNs in the sentiment classification and image classi-
fication tasks.

Tasks dataset DNNs

sentiment classification SST-2 BERTBASE BERTLARGE
91.32% 93.26%

image classification MNIST-3 ResNet-20 VGG-16
100% 100%

O.2 THE SELECTION OF INPUT VARIABLES FOR INTERACTION EXTRACTION

This section discusses the selection of input variables for extracting interactions. As mentioned
in Section 2.2, given an input sample x with n input variables, we can extracted at most 2n interac-

22



Published as a conference paper at ICLR 2024

tions. Therefore, the computational cost for extracting interactions increases exponentially with the
number of input variables. For example, if we take a word in a sentence (or a pixel in an image) as
an input variable, the computation is usually inapplicable. To alleviate this issue, we followed (Shen
et al., 2023) to select a set of words as input variables and leave other words as the constant back-
ground to compute interactions between them. Specifically, we selected 8-10 input variables for
each sample in the three tasks. We only extracted the interactions between the selected variables,
leaving the rest of the unselected input variables unchanged as background.

• For sentences in the SST-2 dataset, we first tokenized the input sentences and selected tokens as
input variables for 200 samples. For each sentence in this dataset, some words have no clear se-
mantics for sentiment classification, i.e., stop words containing dummy words and pronouns, and
consequently, there is little interaction within their corresponding tokens. Therefore, we bypassed
these tokens without clear semantics, and only selected tokens among the remaining semantic to-
kens. To facilitate analysis, we randomly selected n = 10 tokens as input variables for sentences
with more than 10 semantic tokens. The masking of input variables was performed at the embedding
level.

• For sentences in the SQuAD dataset, we took first several words in each document as the input
sample to the DNN. Specifically, we selected the first 30 words in each document as the input sample
and the 31st word as the target word, provided that the following conditions were met: 1) The 31st
word possessed clear semantic meaning, which means that it did not belong to the category of stop
words. 2) The five words immediately preceding the target word did not constitute sentence-ending
punctuation marks, such as a full stop. If either of these conditions was not satisfied, we extended the
initial 30 words until all requirements were fulfilled, and selected the next word as the target word.
When extracting interactions, we randomly selected a set of n = 10 words which have semantic
meanings as input variables. It’s worth noting that a single word can correspond to multiple tokens,
so when we masked a specific word, we masked all of its corresponding tokens. The masking of
input variables was performed at the embedding level.

• For images in the MNIST-3 dataset, we manually labeled the semantic part for 100 positive sam-
ples (digit 3) by following (Li & Zhang, 2023b). For each image in this dataset, most of the pixels
are black background pixels with no semantic information, and consequently, there is no interaction
within these black pixels. Thus, we considered interactions only within foreground pixels. Specif-
ically, we divided a whole image into small patches of size 3 × 3 and selected n = 8 patches in
the foreground of an image as input variables. Following (Li & Zhang, 2023b), we used the zero
patches as the baseline values to mask the unselected patches i ∈ N \ T in the sample.
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